
NGINX: Basics and Best
Practices

Agenda
● Introducing NGINX

● ADC Augment and Modernization

● Installing NGINX and NGINX Plus

● Essential files, commands, and directories

● Basic configurations

● Advanced configurations

● Monitoring and Logging

● Summary

nginx.com

Introducing Nginx

NGINX is the
most used
web server

on the
internet

Source: w3techs, May 2019

https://news.netcraft.com/archives/category/web-server-survey/

About NGINX, Inc.
• Founded in 2011, NGINX Plus first released in 2013

• Offices in SF, London, Cork, Moscow, Singapore, Japan, Sydney, and Moscow

• 1,500+ commercial customers

• 200+ employees

• Acquired by F5 Networks in May 2019

+

| ©2019 F5 NETWORKS 6

LOAD BALANCER
REVERSE PROXY

API GATEWAY
CACHE

WAF

APPLICATION
SERVERS

WEB
SERVER
REVERSE
PROXY

What is NGINX?
NGINX
● Basic load balancer
● Reverse Proxy and Web Server
● Content Cache
● SSL termination
● Rate limiting
● Basic authentication

NGINX PLUS
● Active health checks
● Session persistence
● DNS service discovery integration
● Cache‑purging API
● JWT authentication and OpenID Connect
● Live Activity monitoring (100+ real time metrics)
● Dynamic Modules
● API for Dynamic reconfiguration, Cache‑purge, key-value store
● High Availability, Cluster State sync …...much more.

nginx.com

ADC Augment and
Modernization

8

What’s happening now
Traditional Application Infrastructure are being augmented

| ©2019 F5 NETWORKS 9

ADC Augment - key use cases
Key use cases

 ADC Augment

 Enhancing existing
app environments

 Kubernetes
Integration

 Flexible and scalable
app services

 ADC for Multi-Cloud

 Scale and Secure Apps
across multi-cloud

 API Management

 End-to-end API
lifecycle services

10

• Easiest way to introduce
NGINX into your network

• Hardware layer 4 load
balancer to NGINX

• Can start small with one
application being behind
NGINX and then expand

Traditional Application Infrastructure are being augmented
1. Augment Traditional Load Balancers

11

• Parallel NGINX deployment

• Good architecture if
adopting public cloud while
still keeping private
datacenter

• Can also start small with
one application being
behind NGINX and then
expand

Offload or Migrate new application workloads
2. NGINX Alongside Hardware ADCs

12

• Load balancer per
application

• Load balancer per
customer for SaaS
providers

• Configuration stored along
with application in GitHub

• Fully portable

Legacy Hardware ADC replace to a application centric architecture
3. Micro Load Balancers/Gateways

| ©2019 F5 NETWORKS 13

• Alerting

• API management

• Load balancer management

• Configuration analysis

• Customizable dashboards

• Monitoring

Centralized Monitoring and management

What is the NGINX Controller?

14

Web Server

What is the NGINX Controller?
Nginx and the Nginx Controller

NGINX
Controller Admin

Control Plane

Data Plane

P
olicy

M
etrics

Application
Gateway

Web Server
Serve content from disk

Application
Gateway
FastCGI, uWSGI, gRPC…

Load Balancer /
Reverse Proxy

Caching, SSL termination…

nginx.com

Installing NGINX

● Official NGINX repo
○ Mainline (recommended) - Actively developed; new minor releases made

every 4-6 weeks with new features and enhancements.
○ Stable - Updated only when critical issues or security vulnerabilities need to be

fixed.
○ NGINX PLUS - receives all new features, once they have been tested and proven

in NGINX mainline. Additional enterprise-specific features are included in NGINX
Plus.

● OS vendor and other 3rd party repos
○ Not as frequently updated; e.g. Debian Jessie (8.9) has NGINX 1.6.2
○ Typically built off NGINX mainline branch, sometimes with 3rd party mods

● Compile from source
○ Most difficult.-Download the latest version of the NGINX source code, configure,

build and install it. You will have the option of building various Nginx module

Nginx Installation Options

16

NGINX Installation: Debian/Ubuntu

deb http://nginx.org/packages/mainline/OS/ CODENAME nginx

deb-src http://nginx.org/packages/mainline/OS/ CODENAME nginx

Create /etc/apt/sources.list.d/nginx.list with the following contents:

• OS – ubuntu or debian depending on your distro
• CODENAME:
 - jessie or stretch for debian
 - trusty, xenial, artful, or bionic for ubuntu

$ wget http://nginx.org/keys/nginx_signing.key

$ apt-key add nginx_signing.key

$ apt-get update

$ apt-get install –y nginx

$ /etc/init.d/nginx start

NGINX Installation: CentOS/Red Hat

[nginx]

name=nginx repo

baseurl=http://nginx.org/packages/mainline/OS/OSRELEASE/$basearch/

gpgcheck=0

enabled=1

Create /etc/yum.repos.d/nginx.repo with the following contents:

• OS -- rhel or centos depending on your distro
• OSRELEASE -- 6 or 7 for 6.x or 7.x versions, respectively

$ yum –y install nginx

$ systemctl enable nginx

$ systemctl start nginx

$ firewall-cmd --permanent --zone=public --add-port=80/tcp

$ firewall-cmd --reload

NGINX Plus Installation

• Visit cs.nginx.com/repo_setup

• Select OS from drop down list

• Instructions similar to OSS installation

• Mostly just using a different repo and
installing client certificate

Verifying Installation

$ nginx -v

nginx version: nginx version: nginx/1.15.7 (nginx-plus-r17)

$ ps -ef | grep nginx

root 1088 1 0 19:59 ? 00:00:00 nginx: master process /usr/sbin/nginx -c
/etc/nginx/nginx.conf

nginx 1092 1088 0 19:59 ? 00:00:00 nginx: worker process

MORE INFORMATION AT NGINX.COM

Verifying Installation

nginx.com

Essential files, commands
and directories

MORE INFORMATION AT NGINX.COM

Key NGINX Commands
nginx -h Shows all command line options

nginx -t Configuration syntax check

nginx -T Displays full, concatenated configuration

nginx -V Shows version and build details

nginx –s reload Gracefully reload NGINX processes

$ curl http://localhost/
127.0.0.1 -> 8.163.209.30
$ tail -1 /var/log/nginx/access*.log
127.0.0.1 - - [16/Mar/2017:19:08:19 +0000] "GET / HTTP/1.1" 200 26 "-" "curl/7.47.0”
8.163.209.30 - - [16/Mar/2017:19:08:19 +0000] "GET / HTTP/1.1" 200 26 "-" "curl/7.47.0"

$ sudo nginx –t && sudo nginx –s reload

nginx: the configuration file /etc/nginx/nginx.conf syntax is ok

nginx: configuration file /etc/nginx/nginx.conf test is successful

$ sudo nginx -T > nginx_support_mm-dd-yy.txt

MORE INFORMATION AT NGINX.COM

Key System Commands
ps aux | grep nginx To check running processes

ps -ef --forest | grep nginx To check running processes (Show Process Hierarchy in Forest Format)

service nginx status
systemctl status nginx

Show Nginx Status

netstat -tulpn
Information and statistics about protocols in use and current TCP/IP
network connections.

sudo lsof -i -P -n Check the listening ports and applications on linux

$ curl http://localhost/
127.0.0.1 -> 8.163.209.30
$ tail -1 /var/log/nginx/access*.log
127.0.0.1 - - [16/Mar/2017:19:08:19 +0000] "GET / HTTP/1.1" 200 26 "-" "curl/7.47.0”
8.163.209.30 - - [16/Mar/2017:19:08:19 +0000] "GET / HTTP/1.1" 200 26 "-" "curl/7.47.0"

Path to executable path
$ /usr/sbin/nginx

Default Log Path
$ /var/log/nginx

Key Files and Directories

● /etc/nginx/ # Where all NGINX configuration is stored

● /etc/nginx/nginx.conf # Top-level NGINX configuration, should not
require much modification

● /etc/nginx/conf.d/*.conf # Where your HTTP/S configuration for
virtual servers and upstreams goes, e.g. www.example.com.conf

● /etc/nginx/stream.d/*.conf # Where your TCP/UDP Streams for virtual
servers and upstreams goes, e.g. DNS_53.conf

● /var/log/nginx/access.log # Details about requests and responses

● /var/log/nginx/error.log # Details about NGINX errors

25

server {
 listen <parameters>;

 location <url> {

 }
}

upstream {

}

server {
 listen <parameters>;

 location <url> {

 }
}

upstream {

}

Key Files and Directories

/etc/nginx/

#global settings here

http {
 # HTTP global settings
here

include conf.d/*.conf;
}

Global settings
(tunings, logs, etc)

HTTP block

nginx.conf example.com.conf

server {
 listen <parameters>;

 location <url> {

 }
}

upstream {

}

/etc/nginx/conf.d/

Listen for
requests

Rules to handle
each request

Optional:
upstreams
configurations in
same file,

something.com.conf.disabled Not loaded

nginx.com

Basic configurations

Simple Virtual Server

server {

 listen 80 default_server;

 server_name www.example.com;

...

}

• server defines the context for a
virtual server

• listen specifies IP/port NGINX
should listen on. No IP means bind
to all IPs on system

• server_name specifies hostname of
virtual server

Basic Web Server Configuration

server {

 listen 80 default_server;

 server_name www.example.com;

 location / {

 root /usr/share/nginx/html;

 index index.html index.htm;

 }

}

• www.example.com maps to /usr/share/nginx/html/index.html (then index.htm)
• www.example.com/i/file.txt -> /usr/share/nginx/html/i/file.txt

• root specifies directory where files
are stored

• index defines files that will be used
as an index

Multiplexing Multiple Sites on One IP

www.example.com.conf
server {

 listen 80 default_server;

 server_name www.example.com;

 # ...

}
www.example2.com.conf

server {

 listen 80;

 server_name www.example2.com;

 # ...

}
www.example3.com.conf

server {

 listen 80;

 server_name www.example3.com;

 # ...

}

• NGINX can multiplex a single
IP/port using the Host: header.

• default_server defines the
virtual server to use if Host header
is empty. It is best practice to have
a default_server.

Basic SSL Configuration

server {

 listen 80 default_server;

 server_name www.example.com;

 return 301 https://$server_name$request_uri;

}

server {

 listen 443 ssl default_server;

 server_name www.example.com;

 ssl_certificate cert.crt;

 ssl_certificate_key cert.key;

ssl_ciphers HIGH;

 location / {

 root /usr/share/nginx/html;

 index index.html index.htm;

 }

}

• Force all traffic to SSL is good for
security, customer trust and SEO

• Use Let’s Encrypt to get free SSL
certificates

• Use Mozilla SSL Configuration
Generator to generate
recommended nginx SSL
configurations:
https://mozilla.github.io/se
rver-side-tls/ssl-config-gen
erator/

Basic HTTP/2 Configuration

server {

 listen 443 ssl http2 default_server;

 server_name www.example.com;

 ssl_certificate cert.crt;

 ssl_certificate_key cert.key;

}

• HTTP/2 improves performance with little
to no backend changes

• Add http2 parameter to listen
directive of existing SSL-enabled virtual
server. HTTP/2 is only supported with
SSL in all browsers.

• NGINX only does HTTP/2 client side,
server side is still HTTP/1.1. gRPC is a
special case.

• Note: HTTP/2 requires OpenSSL 1.0.2
or later to work properly

Basic Reverse Proxy Configuration

server {

 location ~ ^(.+\.php)(.*)$ {

 fastcgi_split_path_info ^(.+\.php)(.*)$;

 # fastcgi_pass 127.0.0.1:9000;

 fastcgi_pass unix:/var/run/php7.0-fpm.sock;

 fastcgi_index index.php;

 include fastcgi_params;

 }

}

• Requires PHP FPM:
 apt-get install –y php7.0-fpm

• Can also use PHP 5

• Similar directives available for uWSGI
and SCGI.

• Additional PHP FPM configuration may
be required

Basic Load Balancing Configuration

upstream my_upstream {

 server server1.example.com:80;

 server server2.example.com:80;

 least_conn;
}

server {

 location / {

 proxy_set_header Host $host;

 proxy_pass http://my_upstream;

 }

}

• upstream defines the load balancing pool

• Default load balancing algorithm is round robin.
Others available:
• least_conn selects server with least

amount of active connections
• least_time factors in connection count

and server response time. Available in
NGINX Plus only.

• proxy_pass links virtual server to upstream

• By default NGINX rewrites Host header to name
and port of proxied server. proxy_set_header
overrides and passes through original client
Host header.

Layer 7 Request Routing

server {

 # ...

 location /service1 {

 proxy_pass http://upstream1;

 }

 location /service2 {

 proxy_pass http://upstream2;

 }

 location /service3 {

 proxy_pass http://upstream3;

 }

}

• location blocks are used to do
Layer 7 routing based on URL

• Regex matching can also be used
in location blocks

Basic Caching Configuration

proxy_cache_path /path/to/cache levels=1:2

 keys_zone=my_cache:10m max_size=10g

 inactive=60m use_temp_path=off;

server {

 location / {

 proxy_cache my_cache;

proxy_cache_valid 5m;

 proxy_set_header Host $host;

 proxy_pass http://my_upstream;

 }

}

• proxy_cache_path defines the
parameters of the cache.

• keys_zone defines the size of
memory to store cache keys in. A
1 MB zone can store data for
about 8,000 keys.

• max_size sets upper limit of
cache size. Optional.

• inactive defines how long an
object can stay in cache without
being accessed. Default is 10 m.

• proxy_cache enables
caching for the context it is in

nginx.com

Advanced configurations

Modifications to main nginx.conf

user nginx;

worker_processes auto;

...

http {

 # ...

 keepalive_timeout 300s;

 keepalive_requests 100000;

}

• Set in main nginx.conf file

• Default value for worker_processes varies on
system and installation source

• auto means to create one worker process per
core. This is recommended for most deployments.

• keepalive_timeout controls how long to keep
idle connections to clients open. Default: 75s

• keeplive_requests Max requests on a single
client connection before its closed.Default: 100

• keepalive_* can also be set per virtual server

HTTP/1.1 Keepalive to Upstreams

upstream my_upstream {

 server server1.example.com;

 keepalive 32;

}

server {

 location / {

 proxy_set_header Host $host;

 proxy_http_version 1.1;

 proxy_set_header Connection "";

 proxy_pass http://my_upstream;

 }

}

• keepalive enables TCP connection
cache

• By default NGINX uses HTTP/1.0 with
Connection: Close

• proxy_http_version upgrades
connection to HTTP/1.1

• proxy_set_header enables keepalive by
clearing Connection: Close HTTP
header

SSL Session Caching

server {

 listen 443 ssl default_server;

 server_name www.example.com;

 ssl_certificate cert.crt;

 ssl_certificate_key cert.key;

 ssl_session_cache shared:SSL:10m;

 ssl_session_timeout 10m;

}

• Improves SSL/TLS performance

• 1 MB session cache can store
about 4,000 sessions

• Cache shared across all NGINX
workers

Advanced Caching Configuration

proxy_cache_path /path/to/cache levels=1:2

 keys_zone=my_cache:10m max_size=10g

 inactive=60m use_temp_path=off;

server {

 location / {

 proxy_cache my_cache;

 proxy_cache_lock on;

 proxy_cache_revalidate on;

 proxy_cache_use_stale error timeout updating

 http_500 http_502 http_503 http_504;

 proxy_cache_background_update on;

 proxy_set_header Host $host;

 proxy_pass http://my_upstream;

 }

}

• proxy_cache_lock instructs NGINX
to only send one request to the
upstream when there are multiple
cache misses for the same file.

• proxy_cache_revalidate instructs
NGINX to use If-Modified-Since
when refreshing cache.

• proxy_cache_use_stale instructs
NGINX to serve stale content instead
of an error.

• proxy_cache_background_update
instructs NGINX to do all cache
updates in the background. Combined
with proxy_cache_use_stale
updating, stale content will be
served.

gRPC Proxying with SSL Termination

server {
 listen 443 ssl http2;

 ssl_certificate server.crt;
 ssl_certificate_key server.key;

 location / {
 grpc_pass grpc://localhost:50051;
 }
}

• Configure SSL and HTTP/2 as usual

• Go sample application needs to modified to
point to NGINX IP Address and port.

d

Active Health Checks
upstream my_upstream {

 zone my_upstream 64k;

 server server1.example.com slow_start=30s;

 server server2.example.com slow_start=30s;

}

server {

 # ...

 location @health {

 internal;

 health_check interval=5s uri=/test

 match=statusok;

 proxy_set_header HOST www.example.com;

 proxy_pass http://my_upstream;

 }

match statusok {

 # Used for /test.php health check

 status 200;

 header Content-Type = text/html;

 body ~ "i’m is alive";

}

• Polls /test every 5 seconds

• If response is not 200, server marked
as failed

• If response body does not contain
“I’m alive”, server marked as failed

• Recovered/new servers will slowly
ramp up traffic over 30 seconds

• Exclusive to NGINX Plus

Sticky Cookie Session Persistence

upstream my_upstream {

 server server1.example.com;

 server server2.example.com;

 sticky cookie name expires=1h

 domain=.example.com path=/;

}

• NGINX will insert a cookie using the specified
name

• expires defines how long the cookie is valid
for. The default is for the cookie to expire at the
end of the browser session.

• domain specifies the domain the cookie is
valid for. If not specified, domain field of cookie
is left blank

• path specifies the path the cookie is set for. If
not specified, path field of cookie is left blank

• Exclusive to NGINX Plus

nginx.com

Monitoring and Logging

MORE INFORMATION AT NGINX.COM

NGINX Access Logs

192.168.179.1 - - [15/May/2017:16:36:25 -0700] "GET / HTTP/1.1" 200 612 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X

10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36" "-"

192.168.179.1 - - [15/May/2017:16:36:26 -0700] "GET /favicon.ico HTTP/1.1" 404 571 "http://fmemon-redhat.local/"

"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110

Safari/537.36" "-"

192.168.179.1 - - [15/May/2017:16:36:31 -0700] "GET /basic_status HTTP/1.1" 200 100 "-" "Mozilla/5.0 (Macintosh; Intel

Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36" "-"

● Enabled by default. Can be disabled with the access_log off directive.

● Nginx uses the combined log format (also used by Apache) and includes IP address,
date, request , referrer, user agent, etc. You can add additional NGINX variables, e.g.
timing and a Log format configurable with the log_format directive

● Can enable access logs at a virtual server scope

access_log /var/log/nginx/access.log;

MORE INFORMATION AT NGINX.COM

NGINX Error Logs

2018/03/22 11:29:08 [error] 12696#12696: upstream timed out (110: Connection timed out) while connecting to upstream,

health check "" of peer 10.70.88.24:8832 in upstream "Dev.InternalApi"

2018/03/22 11:29:23 [error] 12696#12696: upstream timed out (110: Connection timed out) while connecting to upstream,

health check "" of peer 10.70.88.15:8832 in upstream "Dev.InternalApi"

2018/03/23 15:25:35 [error] 19997#0: *1 open() "/var/www/nginx-default/phpmy-admin/scripts/setup.php" failed (2: No such

file or directory), client: 80.154.42.54, server: localhost, request: "GET /phpmy-admin/scripts/setup.php HTTP/1.1",

host: "www.example.com"

• Enabled by default. Can be disabled with the error_log off directive.

• Can enable access logs at a virtual server scope

error_log /var/log/nginx/error.log [level];

MORE INFORMATION AT NGINX.COM

Error Log Levels

$ curl http://localhost/
127.0.0.1 -> 8.163.209.30
$ tail -1 /var/log/nginx/access*.log
127.0.0.1 - - [16/Mar/2017:19:08:19 +0000] "GET / HTTP/1.1" 200 26 "-" "curl/7.47.0”
8.163.209.30 - - [16/Mar/2017:19:08:19 +0000] "GET / HTTP/1.1" 200 26 "-" "curl/7.47.0"

debug Detailed Trace

info General Info

notice Something Normal

warn Something Strange

error Unsuccessful

crit Important Issue(s)

alert Fix Now!

emerg Unusable

error_log /var/log/nginx/error.log [level];

MORE INFORMATION AT NGINX.COM

Extra examples
log_format simple escape=json

 '{"timestamp":"$time_iso8601","client":"$remote_addr","uri":"$uri","status":"$status"}';

server {

 server_name www.example.com;

 access_log /var/log/nginx/example.log simple;

 error_log syslog:server=192.168.1.1 debug;

}

server {

 server_name www.example2.com;

map $status $condition {

 ~^[23] 0;

 default 1;

 }

 access_log /var/log/nginx/example2.log simple custom if=$condition;

 error_log /var/log/nginx/example2_error.log info;

}

MORE INFORMATION AT NGINX.COM

Example log parsing commands:

tail -f 10 error.log Tail error logs (last 10 lines)

tail -f 10 access.log | grep 127.0.0.1 Tail and grep (filter) access logs

cat access.log | cut -d '"' -f3 | cut -d
' ' -f2 | sort | uniq -c | sort -rn

Sort access by Response Codes

awk '($9 ~ /404/)' access.log | awk
'{print $7}' | sort | uniq -c | sort -rn

Which links are broken (HTTP 404)?

awk -F\" '{print $2}' access.log | awk
'{print $2}' | sort | uniq -c | sort -r

What are my most requested links?

$ curl http://localhost/
127.0.0.1 -> 8.163.209.30
$ tail -1 /var/log/nginx/access*.log
127.0.0.1 - - [16/Mar/2017:19:08:19 +0000] "GET / HTTP/1.1" 200 26 "-" "curl/7.47.0”
8.163.209.30 - - [16/Mar/2017:19:08:19 +0000] "GET / HTTP/1.1" 200 26 "-" "curl/7.47.0"

MORE INFORMATION AT NGINX.COM

NGINX Stub Status Module
server {

 location /basic_status {

 stub_status;

 }

}

• Provides aggregated NGINX
statistics

• Restrict access so it’s not publicly
visible

$ curl http://127.0.0.1/basic_status
Active connections: 1
server accepts handled requests
 7 7 7
Reading: 0 Writing: 1 Waiting: 0

MORE INFORMATION AT NGINX.COM

NGINX Plus Extended Status Module

• Provides detailed NGINX Plus
statistics

• Over 100+ additional metrics

• Monitoring GUI also available; see
demo.nginx.com

• Exclusive to NGINX Plus
upstream my_upstream {

 #...

 zone my_upstream 64k;

}

server {

#...

 status_zone my_virtual_server;

 }

MORE INFORMATION AT
NGINX.COM

● Over 100 metrics additional real time metrics
● Per virtual server and per backend server statistics
● JSON output to export to your favorite monitoring tool
● See demo.nginx.com for live demo

"nginx_build": "nginx-plus-r12-p2",
"nginx_version": "1.11.10",
"pid": 98240,
"ppid": 50622,
"processes": {
 "respawned": 0
},
"requests": {
 "current": 1,
 "total": 9915307
},
"server_zones": {
 "hg.nginx.org": {
 "discarded": 9150,
 "processing": 0,
 "received": 146131844,
 "requests": 597471,
 "responses": {
 "1xx": 0,
 "2xx": 561986,
 "3xx": 12839,
 "4xx": 7081,
 "5xx": 6415,
 "total": 588321
 },
 "sent": 14036626711
 },

NGINX Plus Dashboard

https://demo.nginx.com/swagger-ui/

MORE INFORMATION AT
NGINX.COM

NGINX Controller

nginx.com

Summary

Summary
● It is recommended to use the NGINX mainline branch for most deployments

● All configuration should go into separate files in /etc/nginx/conf.d/*.conf

● Forcing all traffic to SSL improves security and improves search rankings

● Keepalive connections improve performance by reusing TCP connections

● SSL session caching and HTTP/2 improve SSL performance

● NGINX status module and logging capability provide visibility

● NGINX Plus is recommended for all production, load balancing, API gateway deployments

● NGINX Controller enables you to manage the entire lifecycle of NGINX from monitoring to
configuration from single pane of glass

Try NGINX Plus for free at nginx.com/free-trial-request

Q & A
Try NGINX Plus free for 30 days: nginx.com/free-trial-request

